Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract: Block copolymer comprising of hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHP) and reactive poly[N-(2-hydrazinyl-2-oxoethyl)methacrylamide] (PMAH) was synthesized by a reversible addition-fragmentation chain transfer (RAFT) polymerization and conjugated with doxorubicin (Dox) and/or RGDS targeting peptide via one-step reaction using N-γ-maleimidobutyryl-oxysuccinimide ester. The resulting copolymer served as a coating of magnetic γ-Fe2O3 nanoparticles that were tested in cell proliferation and in vivo experiments on a mice model with inoculated rat C6 glioblastoma tumor. The nanoparticles conjugated with RGDS peptide and doxorubicin easily engulfed both C6 tumor cell line, primary glioblastoma (GB) cells, and human mesenchymal stem cells (hMSC) used as a control; the particles decreased the GB cell growth by 45% compared to control cells without any treatment. Moreover, the γ-Fe2O3@P(HP-MAH)-RGDS-Dox nanoparticles injected into C6 glioblastoma cell-derived tumors grown in the posterior flank of mice decreased the tumor size and more apoptotic cells were spread compared to that treated with free Dox. Graphical Abstract: [InlineMediaObject not available: see fulltext.]

Original publication

DOI

10.1007/s00396-021-04895-6

Type

Journal article

Journal

Colloid and Polymer Science

Publication Date

01/04/2022

Volume

300

Pages

267 - 277