Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca2+-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we use lightsheet microscopy on hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue. Our advances establish a platform for studying PIEZO1 mechanotransduction in human systems, with potential for elucidating disease mechanisms and targeted drug screening.

Original publication

DOI

10.1038/s41467-025-59150-1

Type

Journal article

Journal

Nat Commun

Publication Date

01/07/2025

Volume

16

Keywords

Humans, Induced Pluripotent Stem Cells, Ion Channels, Organoids, Mechanotransduction, Cellular, Single-Cell Analysis, Patch-Clamp Techniques, Calcium