Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In this work, we propose a symmetrical multimodal EEG/fMRI information fusion approach dedicated to the identification of event-related bioelectric and hemodynamic responses. Unlike existing, asymmetrical EEG/fMRI data fusion algorithms, we build a joint EEG/fMRI generative model that explicitly accounts for local coupling/uncoupling of bioelectric and hemodynamic activities, which are supposed to share a common substrate. Under a dedicated assumption of spatio-temporal separability, the spatial profile of the common EEG/fMRI sources is introduced as an unknown hierarchical prior on both markers of cerebral activity. Thereby, a devoted Variational Bayesian (VB) learning scheme is derived to infer common EEG/fMRI sources from a joint EEG/fMRI dataset. This yields an estimate of the common spatial profile, which is built as a trade-off between information extracted from EEG and fMRI datasets. Furthermore, the spatial structure of the EEG/fMRI coupling/uncoupling is learned exclusively from the data. The proposed data generative model and devoted VBEM learning scheme thus provide an un-supervised well-balanced approach for the fusion of EEG/fMRI information. We first demonstrate our approach on synthetic data. Results show that, in contrast to classical EEG/fMRI fusion approach, the method proved efficient and robust regardless of the EEG/fMRI discordance level. We apply the method on EEG/fMRI recordings from a patient with epilepsy, in order to identify brain areas involved during the generation of epileptic spikes. The results are validated using intracranial EEG measurements.

Original publication

DOI

10.1016/j.neuroimage.2007.01.044

Type

Journal article

Journal

Neuroimage

Publication Date

15/05/2007

Volume

36

Pages

69 - 87

Keywords

Adult, Artifacts, Bayes Theorem, Brain Mapping, Cerebral Cortex, Computer Simulation, Dominance, Cerebral, Electroencephalography, Epilepsies, Partial, Evoked Potentials, Female, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Occipital Lobe