Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Diffusion-weighted steady-state free precession (DW-SSFP) accumulates signal from multiple echoes over several TRs yielding a strong sensitivity to diffusion with short gradient durations and imaging times. Although the DW-SSFP signal is well characterized for isotropic, Gaussian diffusion, it is unclear how the DW-SSFP signal propagates in inhomogeneous media such as brain tissue. This article presents a more general analytical expression for the DW-SSFP signal which accommodates Gaussian and non-Gaussian spin displacement probability density functions. This new framework for calculating the DW-SSFP signal is used to investigate signal behavior for a single fiber, crossing fibers, and reflective barriers. DW-SSFP measurements in the corpus callosum of a fixed brain are shown to be in good agreement with theoretical predictions. Further measurements in fixed brain tissue also demonstrate that 3D DW-SSFP out-performs 3D diffusion weighted spin echo in both SNR and CNR efficiency providing a compelling example of its potential to be used for high resolution diffusion tensor imaging.

Original publication

DOI

10.1002/mrm.21668

Type

Journal article

Journal

Magn Reson Med

Publication Date

08/2008

Volume

60

Pages

405 - 413

Keywords

Algorithms, Animals, Anisotropy, Corpus Callosum, Diffusion Magnetic Resonance Imaging, Image Enhancement, Image Interpretation, Computer-Assisted, Macaca mulatta, Male, Nerve Fibers, Myelinated, Reproducibility of Results, Sensitivity and Specificity