Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Aberrant metabolism of the amyloid precursor protein (APP) is believed to be at least part of the pathogenic process in Alzheimer's disease. The carboxy-terminus of APP has been shown to interact with the Mint/X11 family of phosphotyrosine binding (PTB) domain-bearing proteins. It is via their PTB domains that the Mints/X11s bind to APP. Here we report the cloning of full-length mouse Mint2 and demonstrate that in primary cortical neurons, Mint2 and APP share highly similar distributions. Mint2 also colocalizes with APP in transfected CHO cells. In Mint2/APP-cotransfected cells, Mint2 reorganizes the subcellular distribution of APP and also increases the steady-state levels of APP. Finally, we demonstrate that Mint2 is associated with the neuritic plaques found in Alzheimer's disease but not with neurofibrillary tangles. These results are consistent with a role for Mint2 in APP metabolism and trafficking, and suggest a possible role for the Mints/X11s in the pathogenesis of Alzheimer's disease.


Journal article


Eur J Neurosci

Publication Date





1988 - 1994


Alzheimer Disease, Amino Acid Sequence, Amyloid beta-Protein Precursor, Animals, Brain, CHO Cells, Cadherins, Carrier Proteins, Cricetinae, Homeostasis, Humans, Mice, Molecular Sequence Data, Nerve Tissue Proteins, Plaque, Amyloid, Subcellular Fractions, Tissue Distribution, Transfection