Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Immunoglobulin (Ig) class switching is initiated by deamination of C→U within the immunoglobulin heavy chain locus, catalyzed by activation-induced deaminase (AID). In the absence of uracil-DNA glycosylase (UNG) and the homologue of bacterial MutS (MSH)–2 mismatch recognition protein, the resultant U:G lesions are not processed into switching events but are fixed by replication allowing sites of AID-catalyzed deamination to be identified by the resulting C→T mutations. We find that AID targets cytosines in both donor and acceptor switch regions (S regions) with the deamination domains initiating ∼150 nucleotides 3′ of the I exon start sites and extending over several kilobases (the IgH intronic enhancer is spared). Culturing B cells with interleukin 4 or interferon γ specifically enhanced deamination around Sγ1 and Sγ2a, respectively. Mutation spectra suggest that, in the absence of UNG and MSH2, AID may occasionally act at the μ switch region in an apparently processive manner, but there is no marked preference for targeting of the transcribed versus nontranscribed strand (even in areas capable of R loop formation). The data are consistent with switch recombination being triggered by transcription-associated, strand-symmetric AID-mediated deamination at both donor and acceptor S regions with cytokines directing isotype specificity by potentiating AID recruitment to the relevant acceptor S region.

Original publication

DOI

10.1084/jem.20061067

Type

Journal article

Journal

Journal of Experimental Medicine

Publisher

Rockefeller University Press

Publication Date

04/09/2006

Volume

203

Pages

2085 - 2094