Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

©2014. American Geophysical Union. All Rights Reserved. Understanding how precipitation varies as the climate changes is essential to determining the true impact of global warming. This is a difficult task not only due to the large internal variability observed in precipitation but also because of a limited historical record and large biases in simulations of precipitation by general circulation models (GCMs). Here we make use of a technique that spatially and seasonally transforms GCM fields to reduce location biases and investigate the potential of this bias correction to study historical changes. We use two versions of this bias correction - one that conserves intensities and another that conserves integrated precipitation over transformed areas. Focussing on multimodel ensemble means, we find that both versions reduce RMS error in the historical trend by approximately 11% relative to the Global Precipitation Climatology Project (GPCP) data set. By regressing GCMs' historical simulations of precipitation onto radiative forcings, we decompose these simulations into anthropogenic and natural time series. We then perform a simple detection and attribution study to investigate the impact of reducing location biases on detectability. A multiple ordinary least squares regression of GPCP onto the anthropogenic and natural time series, with the assumptions made, finds anthropogenic detectability only when spatial corrections are applied. The result is the same regardless of which form of conservation is used and without reducing the dimensionality of the fields beyond taking zonal means. While "detectability" is dependent both on the exact methodology and the confidence required, this nevertheless demonstrates the potential benefits of correcting location biases in GCMs when studying historical precipitation, especially in cases where a signal was previously undetectable.

Original publication

DOI

10.1002/2014JD022358

Type

Journal article

Journal

Journal of Geophysical Research Atmospheres

Publication Date

27/11/2014

Volume

119

Pages

12466 - 12478