Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI. THEORY AND METHODS: The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method. RESULTS: The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods. CONCLUSION: The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions.

Original publication

DOI

10.1002/mrm.25290

Type

Journal article

Journal

Magn Reson Med

Publication Date

05/2015

Volume

73

Pages

1775 - 1785

Keywords

anisotropic sparsity, compressed sensing, diffusion tensor imaging, parallel imaging, variable density spiral, Brain, Diffusion Magnetic Resonance Imaging, Humans, Image Enhancement, Image Processing, Computer-Assisted, Statistics as Topic