Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Huntington's disease (HD) is genetically determined but with variability in symptom onset, leading to uncertainty as to when pharmacological intervention should be initiated. Here we take a computational approach based on neurocognitive phenotyping, computational modeling, and classification, in an effort to provide quantitative predictors of HD before symptom onset. A large sample of subjects-consisting of both pre-manifest individuals carrying the HD mutation (pre-HD), and early symptomatic-as well as healthy controls performed the antisaccade conflict task, which requires executive control and response inhibition. While symptomatic HD subjects differed substantially from controls in behavioral measures [reaction time (RT) and error rates], there was no such clear behavioral differences in pre-HD. RT distributions and error rates were fit with an accumulator-based model which summarizes the computational processes involved and which are related to identified mechanisms in more detailed neural models of prefrontal cortex and basal ganglia. Classification based on fitted model parameters revealed a key parameter related to executive control differentiated pre-HD from controls, whereas the response inhibition parameter declined only after symptom onset. These findings demonstrate the utility of computational approaches for classification and prediction of brain disorders, and provide clues as to the underlying neural mechanisms.

Original publication

DOI

10.1371/journal.pone.0148409

Type

Journal

PLoS One

Publication Date

2016

Volume

11

Keywords

Adult, Basal Ganglia, Biomarkers, Case-Control Studies, Cognition, Computer Simulation, Disease Progression, Executive Function, Female, Humans, Huntington Disease, Male, Middle Aged, Models, Psychological, Prefrontal Cortex, Prognosis, Psychological Tests, Reaction Time, Saccades