Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Traditionally, assessment of psychiatric symptoms has been relying on their retrospective report to a trained interviewer. The emergence of smartphones facilitates passive sensor-based monitoring and active real-time monitoring through time-stamped prompts; however there are few validated self-report measures designed for this purpose. METHODS: We introduce a novel, compact questionnaire, Mood Zoom (MZ), embedded in a customised smart-phone application. MZ asks participants to rate anxiety, elation, sadness, anger, irritability and energy on a 7-point Likert scale. For comparison, we used four standard clinical questionnaires administered to participants weekly to quantify mania (ASRM), depression (QIDS), anxiety (GAD-7), and quality of life (EQ-5D). We monitored 48 Bipolar Disorder (BD), 31 Borderline Personality Disorders (BPD) and 51 Healthy control (HC) participants to study longitudinal (median±iqr: 313±194 days) variation and differences of mood traits by exploring the data using diverse time-series tools. RESULTS: MZ correlated well (|R|>0.5,p<0.0001) with QIDS, GAD-7, and EQ-5D. We found statistically strong (|R|>0.3,p<0.0001) differences in variability in all questionnaires for the three cohorts. Compared to HC, BD and BPD participants exhibit different trends and variability, and on average had higher self-reported scores in mania, depression, and anxiety, and lower quality of life. In particular, analysis of MZ variability can differentiate BD and BPD which was not hitherto possible using the weekly questionnaires. LIMITATIONS: All reported scores rely on self-assessment; there is a lack of ongoing clinical assessment by experts to validate the findings. CONCLUSIONS: MZ could be used for efficient, long-term, effective daily monitoring of mood instability in clinical psychiatric practice.

Original publication

DOI

10.1016/j.jad.2016.06.065

Type

Journal article

Journal

J Affect Disord

Publication Date

15/11/2016

Volume

205

Pages

225 - 233

Keywords

Bipolar disorder, Borderline personality disorder, Digital health, Mood assessment, Mood monitoring, Patient reported outcome measures