Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A variety of different methods of finding correspondences across sets of images to build statistical shape models have been proposed, each of which is likely to result in a different model. When dealing with large datasets (particularly in 3D), it is difficult to evaluate the quality of the resulting models. However, if the different methods are successfully modelling the true underlying shape variation, the resulting models should be similar. If two different techniques lead to similar models, it suggests that they are indeed approximating the true shape change. In this paper we explore a method of comparing statistical shape models by evaluating the Bhattacharya overlap between their implied shape distributions. We apply the technique to investigate the similarity of three models of the same 3D dataset constructed using different methods.


Journal article


Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

Publication Date





142 - 150