Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

miRs (microRNAs) post-transcriptionally regulate gene expression mainly by repressing translation or by inducing mRNA degradation. Dicer, an enzyme responsible for miR biogenesis, is required for T-cell function, suggesting regulatory roles for miRs in lymphocytes. However, specific roles for individual miRs are only just beginning to emerge. miR-155 is encoded within an exon of the non-coding RNA known as bic (B-cell integration cluster) and high levels of bic expression are induced upon antigen receptor stimulation of B- and T-cells, as well as TLR (Toll-like receptor) stimulation of macrophages and dendritic cells. High levels of bic/miR-155 are found in B-cell lymphomas and solid tumours, indicating that this locus may also be linked to cancer. Indeed, transgenic mice overexpressing miR-155 develop B-cell malignancies. To define the in vivo role of bic/miR-155 (bic), we have studied bic-deficient mice. These mice are immunodeficient and fail to generate high levels of class-switched antibody upon immunization with thymus-dependent and thymus-independent antigens. This defect is intrinsic to B-cells and manifested at the level of differentiation of switched plasmablasts into mature antibody secreting plasma cells. In addition, bic-deficient T-cells show skewed differentiation into the Th2 lineage under a variety of in vitro culture conditions. Microarray analysis of bic-deficient B- and T-cells under different conditions has revealed a wide spectrum of targets regulated by an miR-155 and suggested mechanisms for the regulation of lymphocyte differentiation by a single miR.

Original publication




Conference paper

Publication Date





531 - 533


Animals, B-Lymphocytes, Cell Differentiation, Gene Expression Regulation, Immunoglobulin Class Switching, Mice, MicroRNAs, Models, Biological, Oligonucleotide Array Sequence Analysis, T-Lymphocytes