Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:: Compared to 1.5 T, 3 T magnetic resonance imaging (MRI) increases signal-to-noise ratio leading to improved image quality. However, its clinical relevance in clinically isolated syndrome suggestive of multiple sclerosis remains uncertain. OBJECTIVES:: The purpose of this study was to investigate how 3 T MRI affects the agreement between raters on lesion detection and diagnosis. METHODS:: We selected 30 patients and 10 healthy controls from our ongoing prospective multicentre cohort. All subjects received baseline 1.5 and 3 T brain and spinal cord MRI. Patients also received follow-up brain MRI at 3-6 months. Four experienced neuroradiologists and four less-experienced raters scored the number of lesions per anatomical region and determined dissemination in space and time (McDonald 2010). RESULTS:: In controls, the mean number of lesions per rater was 0.16 at 1.5 T and 0.38 at 3 T ( p = 0.005). For patients, this was 4.18 and 4.40, respectively ( p = 0.657). Inter-rater agreement on involvement per anatomical region and dissemination in space and time was moderate to good for both field strengths. 3 T slightly improved agreement between experienced raters, but slightly decreased agreement between less-experienced raters. CONCLUSION:: Overall, the interobserver agreement was moderate to good. 3 T appears to improve the reading for experienced readers, underlining the benefit of additional training.

Original publication




Journal article


Mult Scler

Publication Date





352 - 360


Multiple sclerosis, clinically isolated syndrome, interobserver variation, magnetic resonance imaging, multicentre study