Shenghong He
The Guarantors of Brain Postdoctoral Research Fellow
Shenghong He graduated with a D.Phil. in Engineering from South China University of Technology, China, in December 2017. His graduate work has mainly focused on developing real-time asynchronous brain-machine interface (BMI) methods and their applications using bioelectric signals including electroencephalogram (EEG) and electrooculography (EOG). In May 2018, Shenghong joined Dr Huiling Tan’s Group as a Postdoctoral Research Scientist in Neuroscience. Shenghong’s current research is focused on developing BMI systems based on subcortical local field potentials (LFPs) recorded from people with Parkinson’s disease, and testing the efficacy of this new BMI system in neuroprosthetic control and neurofeedback training. His work involves collecting behavioural and electrophysiological data, analysing brain signals in real-time to decode relevant information, using this information to drive an external actuator, and, at the same time, to better understand the pathological mechanisms and symptoms of different brain diseases, and to advance his research on brain-machine interfaces for improved treatments.
Recent publications
-
Tailoring Human Sleep: selective alteration through Brainstem Arousal Circuit Stimulation
Preprint
Deli A. et al, (2023)
-
Balance between competing spectral states in Subthalamic nucleus is linked to motor impairment in Parkinson’s Disease
Journal article
Khawaldeh S. et al, (2021), Brain: a journal of neurology
-
Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients
Journal article
He S. et al, (2020), eLife, 9
-
Entraining stepping movements of Parkinson’s patients to alternating subthalamic nucleus deep brain stimulation
Journal article
Fischer P. et al, (2020), The Journal of Neuroscience
-
A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
Journal article
Zhou Y. et al, (2020), IEEE Trans Biomed Eng, 67, 2881 - 2892