Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our researchers have shown how different colours of light could affect our ability to sleep.

The researchers, led by Dr Stuart Peirson from Oxford's Sleep and Circadian Neuroscience Institute were aiming to understand why exposing mice to bright light caused two - physically incompatible - responses.

Dr Peirson explained: 'When we expose mice to light during the night, it causes them to fall asleep. Yet, at the same time, it also increases levels of corticosterone, a stress hormone produced by the adrenal gland that causes arousal - wakefulness. We wanted to understand how these two effects were related and how they were linked to a blue light-sensitive pigment called melanopsin, known to play a key role in setting our body clock.'

Read more on the University of Oxford website...

Similar stories

Accidental awareness in obstetric surgery under general anaesthesia more frequent than expected

Anaesthetics Research

The largest ever study of awareness during obstetric general anaesthesia shows around 1 in 250 women may be affected, and some may experience long-term psychological harm.

Two neurologists awarded MRC Senior Clinical Fellowships

Clinical Neurology Research

Two of our Associate Professors, Sarosh Irani and George Tofaris, have been awarded MRC Senior Clinical Fellowships.

Developing diagnostics for COVID-19

Clinical Neurology Coronavirus Research

Associate Professor Sarosh Irani, who heads up our Autoimmune Neurology Group, has been funded by Mologic to help develop diagnostics for COVID-19.

COVID-19 and Guillain-Barré syndrome

Clinical Neurology Coronavirus Research

Multiple recent case reports have suggested a link between COVID-19 and Guillain-Barré syndrome (GBS), an acute, disabling, immune-mediated disorder of the peripheral nervous system. It is currently unclear whether this simply represents a chance association.

The brain understands relationships in the same way as it understands how to move in space

Integrative Neuroimaging Research

Researchers led by a team at the Wellcome Centre for Integrative Neuroimaging at the University of Oxford have developed a new framework that binds together the way the brain forms maps of space to the way the brain understands relationships of any kind – general mental maps.