Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

One of the hallmarks of Parkinson’s disease (PD) is the presence of abnormal synchronised oscillatory activity within the basal ganglia at certain frequencies. This activity may jam normal communication within brain circuits governing movement, leading to the symptoms of PD. It is unclear however how this activity arises, or how it may be best treated in individual patients.

Ashwini Oswal is a Clinical Lecturer in Neurology affiliated to two of NDCN's divisions: the MRC Brain Network Dynamics Unit and the Division of Clinical Neurology. He and his colleagues have integrated imaging approaches (MRI tractography, magnetoencephalography and invasive recordings) in PD patients undergoing treatment with Deep Brain Stimulation, in an attempt to provide an improved understanding of how abnormal oscillatory synchrony arises in PD. 

Using multimodal imaging and computational models they observed that a direct pathway linking the motor cortex and the basal ganglia (known as the hyperdirect pathway) may be responsible for triggering abnormal synchrony within the basal ganglia in PD.

These findings could allow the development of more intelligent brain stimulation techniques that specifically target the hyperdirect pathway and ameliorate abnormal synchrony within the basal ganglia.  

Image caption: A: visualization of Deep Brain Stimulation electrodes targeting the subthalamic nucleus in Parkinson’s disease (PD) patients. B: Top; white matter tracts passing between cortical areas and the STN in PD (‘hyperdirect pathway’). The green and blue contours represent the supplementary motor area (SMA) and primary motor cortex. Middle; coupling between cortical areas and the STN at high beta band (21-30 Hz) frequencies. Bottom; Regions where high beta band cortico-STN coupling is predicted by anatomical connectivity within the hyperdirect pathway. C: Computational models reveal that high beta band cortical inputs to the STN can trigger the generation of lower beta frequencies which are believed to be pathological.

Read the paper

Similar stories

Blood lipoprotein levels linked to future risk of amyotrophic lateral sclerosis

Greater understanding of the role of lipoproteins could support screening and efforts to develop treatments.

Alexander Davies wins top UKRI Future Leaders Fellowship

Alex is one of eight Oxford University academics who have been awarded significant financial funding from the UKRI Future Leaders Fellowships Scheme

New study on link between autoimmunity and pain

Patients with autoantibodies which target neuronal proteins can have pain as an under-recognised clinical manifestation.

John Jacob wins clinical academic research partnership for brain cancer project

The Medical Research Council awarded Dr John Jacob upwards of £200,000 to fund a project on brain cancer modelling.