Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The family of disorders known as ataxias can impair speech, balance and coordination, and have varying levels of severity. A team led by Dr Andrea Nemeth from NDCN has identified a new member of this group of conditions which is connected to Spinocerebellar Ataxia Type 5 (SCA5). SCA5 is sometimes known as ‘Lincoln ataxia,’ because it was first found in the relatives of US President Abraham Lincoln.

SCA5 is caused by dominant mutations in the gene for ‘beta-III spectrin’, a membrane scaffold protein known to play an important role in the cerebellum. Publishing in PLOS Genetics, the team have identified a more serious recessive ataxia related to SCA5 which is caused by a homozygous stop codon mutation in the beta-III spectrin gene. The homozygous condition causes a novel disorder named ‘SPARCA1’ (Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1), which is associated with a severe childhood ataxia and marked cognitive impairment.

This is the first report of any spectrin-related disorder where both copies of the gene are faulty and has given important insights into both SCA5 and SPARCA1.

Whole genome sequencing and genome-wide mapping, performed at the Wellcome Trust Centre for Human Genetics in Oxford, in addition to the characterization of brain abnormalities in beta-III spectrin knockout mice by team members from Edinburgh (led by Dr Mandy Jackson, who obtained her DPhil at the now Weatherall Institute for Molecular Medicine in Oxford) links the beta-III spectrin defect to changes in nerve-cell shape in brain areas associated with cognition and coordination of movements. The work shows that loss of normal beta-III spectrin function underlies both SPARCA1 and SCA5, but a greater loss of beta-III spectrin is required before cognition problems arise.

This study provides novel evidence for a broad role of spectrin in normal brain function beyond the cerebellum, in both cortical brain development and cognition. There are many brain spectrins and the team are now searching for other abnormalities of spectrin function, as they believe these are part of an expanding group of conditions known as “neuronal spectrinopathies”.

For the full paper please visit the PLOS Genetics website.

Similar stories

Attention and memory deficits persist for months after recovery from mild COVID

Researchers from Oxford’s Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology have shown that people who have had COVID but don’t complain of long COVID symptoms in daily life nevertheless can show degraded attention and memory for up to six to nine months.

New Academic Visitor from Nigeria

Associate Professor of Radiology, Godwin Ogbole has arrived on a six-month visit to the Nuffield Department of Clinical Neurosciences, as part of the Africa Oxford Initiative.

New spinout company: Human-Centric Drug Discovery

Human-Centric Drug Discovery is a new Oxford University spinout company from Professor Zameel Cader's lab.

Funding received for research into Motor Neuron Disease

A £210,000 donation from the Alan Davidson Foundation has been made to our Department to advance our world-leading research into Motor Neuron Disease. The funding will support a project manager to deliver an innovative research project using the genetic causes of MND to develop approaches to early diagnosis.

Research finds drug may benefit some patients hospitalised with COVID-19 pneumonia

A proof-of-concept trial involving Oxford researchers has identified a drug that may benefit some patients hospitalised with COVID-19 pneumonia.

Protein test could lead to earlier and better diagnosis of Parkinson’s

Scientists have observed the clumping of alpha-synuclein in the cerebrospinal fluid taken from people with Parkinson's. The findings offer hope that a pioneering new clinical test could be developed to diagnose Parkinson's correctly in its early stages.