Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Oxford University’s Medical Sciences Division today partnered with Muscular Dystrophy UK to develop the multi-million pound Oxford Neuromuscular Translational Research Centre.

The centre, which involves Professor Kevin Talbot from NDCN, aims to bring new treatments to neuromuscular disease patients more quickly and is part of an investment from MDUK of over £4.5 million into five new transformational commitments. 

Read more 

Similar stories

European Platform for Neurodegenerative Diseases launches repository of cohorts for researchers

The new Cohort Catalogue will facilitate discovery of over 60 neurodegeneration research cohorts from 17 countries across Europe

Ashmolean turns red for World Encephalitis Day

Our researchers are tackling the devastating brain condition encephalitis.

Bioelectronic implant offers an intelligent therapy to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their 'smart' bioelectronic implants.

Direct evidence of reduced NMDA receptors in people with form of encephalitis

NMDAR-antibody encephalitis is an autoimmune brain condition caused by patient’s own antibodies that bind to NMDA (N-Methyl-D-Aspartate) receptors in the synapses between nerve cells.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.