Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new consortium of 27 partners coordinated by our department will tackle the challenge of discovery and characterisation of blood-brain barrier targets and transport mechanisms for brain delivery of therapeutics to treat neurodegenerative and metabolic diseases.

Two researchers in a lab
With this funding, we will be able to develop more sophisticated models that replicate the human blood-brain barrier far more accurately, allowing us to investigate how the barrier acts at a molecular level during disease.
- Associate Professor Zameel Cader

The blood-brain barrier is a protective layer between the brain’s blood capillaries and the cells that make up brain tissue. This barrier provides a defence against the pathogens and toxins that may be in our blood, allowing very few molecules to pass through. It can also prevent many drugs from passing across into the brain, and this presents a major problem in treating neurological conditions and metabolic diseases, especially when using antibody therapies. On the other hand, several neurological diseases could originate from a dysfunctional blood-brain barrier.

The funding from the Innovative Medicines Initiative (IMI) to the IM2PACT consortium will allow this public-private partnership, which includes leading international experts in the field, to facilitate the development of drugs to treat neurological disorders by: 

  • discovering and developing innovative and effective brain transport mechanisms
  • establishing and characterising blood-brain barrier models with good predictability in health and disease
  • identifying translational read-outs closer to the pathogenesis of neurodegeneration and mimicking altered blood-brain barrier under disease conditions
  • in-depth understanding of the biology of the blood-brain barrier and characterisation of various pathophysiological mechanisms across the blood-brain barrier.

IM2PACT will foster the development of disease-modifying treatment in a setting of personalised medicine.

Dominique Lesuisse, Head of the Central Nervous System Barrier Group at Sanofi and IM2PACT project leader, said: 'Our existing models are not effective enough at telling us which drugs in particular biotherapeutics will break through the blood-brain barrier. IM2PACT will progress the state of the art and help devise optimal ways of getting therapies into the brain.'

With a budget of €18m, €9m of direct funding from IMI and €9m of in-kind funding from industry, IM2PACT is forming a large partnership to better understand the blood-brain barrier. The Innovative Medicines Initiative 2 Joint Undertaking is Europe’s biggest public private partnership and is funded jointly by the European Union´s Horizon 2020 research and innovation programme and the European pharmaceutical industry, represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA).

Similar stories

New spinout company: Human-Centric Drug Discovery

Human-Centric Drug Discovery is a new Oxford University spinout company from Professor Zameel Cader's lab.

Funding received for research into Motor Neuron Disease

A £210,000 donation from the Alan Davidson Foundation has been made to our Department to advance our world-leading research into Motor Neuron Disease. The funding will support a project manager to deliver an innovative research project using the genetic causes of MND to develop approaches to early diagnosis.

Research finds drug may benefit some patients hospitalised with COVID-19 pneumonia

A proof-of-concept trial involving Oxford researchers has identified a drug that may benefit some patients hospitalised with COVID-19 pneumonia.

Protein test could lead to earlier and better diagnosis of Parkinson’s

Scientists have observed the clumping of alpha-synuclein in the cerebrospinal fluid taken from people with Parkinson's. The findings offer hope that a pioneering new clinical test could be developed to diagnose Parkinson's correctly in its early stages.

Nine new Professors

Many congratulations to the following members of our Department who have been awarded the title of Professor in the recent Recognition of Distinction round.

Evaluating risk to people with epilepsy during the COVID-19 pandemic - study wins international prize

In May 2020 our researchers initiated a global project to investigate how COVID-19 has affected people with epilepsy, their carers and health care workers.