Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The degree to which functional connectivity between brain regions is affected by the properties of white matter pathways is a fundamental question in neuroscience.

Magnetic resonance imaging can study both the strength of communication between brain regions (functional connectivity) and the properties of the pathways that connect them (white matter microstructure). Animal studies suggest that these things are related, but there is little literature on this in humans.

Jeroen Mollink, Karla Miller and Saad Jbabdi used 11,000 subjects from UK Biobank to ask whether features related to white matter microstructure (diffusion MRI) can predict the synchrony of functional MRI activity in the regions a given pathway connects.

They constructed models of diffusion MRI derived features to predict functional connectivity. 'One exciting finding is that that microstructure-function relationships are a general property of the brain', said lead author Jeroen Mollink, 'Our microstructure models were able to identify statistically significant variation in function in the vast majority - 90% - of brain regions we considered.'

The research revealed that these relationships are specific, in that you almost always get a better prediction if you use the correct white matter pathway for a given region, compared to predictions using a different white matter pathway. 

In addition, these relationships are reproducible. The researchers trained the models on an initial cohort of 7500 subjects, and then used them to predict functional connectivity in 3800 un-seen subjects.

Finally, the team discovered a unique genetic profile for these relatoinships, via a genome-wide association study of the function-microstructure prediction for each region

The identification of these small but reproducible effects can be a first step toward aggregate measures with greater explanatory power.

Read the full paper here

Similar stories

New insights into the effect of exposure to dim light in the evening on the biology of the sleep-wake cycle

A new study has revealed more about how exposure to dim light in the evening affects circadian health. The findings emphasise the need to optimise our artificial light exposure if we are to avoid shifting our biological clocks.

Blood lipoprotein levels linked to future risk of amyotrophic lateral sclerosis

Greater understanding of the role of lipoproteins could support screening and efforts to develop treatments.

International study finds insomnia, anxiety and depression very prevalent during first phase of COVID-19 pandemic

Researchers are recommending public health interventions to reduce the long-term adverse outcomes associated with chronic insomnia and mental health problems.

Alexander Davies wins top UKRI Future Leaders Fellowship

Alex is one of eight Oxford University academics who have been awarded significant financial funding from the UKRI Future Leaders Fellowships Scheme

New study on link between autoimmunity and pain

Patients with autoantibodies which target neuronal proteins can have pain as an under-recognised clinical manifestation.