Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The degree to which functional connectivity between brain regions is affected by the properties of white matter pathways is a fundamental question in neuroscience.

Magnetic resonance imaging can study both the strength of communication between brain regions (functional connectivity) and the properties of the pathways that connect them (white matter microstructure). Animal studies suggest that these things are related, but there is little literature on this in humans.

Jeroen Mollink, Karla Miller and Saad Jbabdi used 11,000 subjects from UK Biobank to ask whether features related to white matter microstructure (diffusion MRI) can predict the synchrony of functional MRI activity in the regions a given pathway connects.

They constructed models of diffusion MRI derived features to predict functional connectivity. 'One exciting finding is that that microstructure-function relationships are a general property of the brain', said lead author Jeroen Mollink, 'Our microstructure models were able to identify statistically significant variation in function in the vast majority - 90% - of brain regions we considered.'

The research revealed that these relationships are specific, in that you almost always get a better prediction if you use the correct white matter pathway for a given region, compared to predictions using a different white matter pathway. 

In addition, these relationships are reproducible. The researchers trained the models on an initial cohort of 7500 subjects, and then used them to predict functional connectivity in 3800 un-seen subjects.

Finally, the team discovered a unique genetic profile for these relatoinships, via a genome-wide association study of the function-microstructure prediction for each region

The identification of these small but reproducible effects can be a first step toward aggregate measures with greater explanatory power.

Read the full paper here

Similar stories

Researcher publishes children's book of the brain

Integrative Neuroimaging

Betina Ip, a Royal Society Dorothy Hodgkin Research Fellow, has written a book for children: The Usborne Book of the Brain

Research shows how the brain reorganises old memories when new ones are made

MRC BNDU Research

Researchers have discovered that the arrangement of existing memories in the brain is altered when we embed new memories

Capturing immune cells that colonise the brain to prevent disease progression in multiple sclerosis

Clinical Neurology Research

Researchers have revealed a disease-causing population of immune cells, which travel to the brain in patients with multiple sclerosis. They demonstrate how to trap these cells in the blood, which means they can be targeted to prevent disease progression.

New machine learning system developed to identify deteriorating patients in hospital

Anaesthetics Research

Researchers have developed a machine learning algorithm that could improve clinicians’ ability to identify hospitalised patients who need intensive care.

Accidental awareness in obstetric surgery under general anaesthesia more frequent than expected

Anaesthetics Research

The largest ever study of awareness during obstetric general anaesthesia shows around 1 in 250 women may be affected, and some may experience long-term psychological harm.