Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dave Bennett and colleagues from King's College London have identified a molecular signal which drives and enables the spinal cord’s natural capacity for repair after injury. The findings could one day lead to new treatments which enhance this spontaneous repair mechanism..

Every year more than 130,000 people suffer traumatic spinal cord injury (usually from a road traffic accident, fall or sporting injury) and related healthcare costs are among the highest of any medical condition - yet there is still no cure or adequate treatment.

Spinal cord injury has devastating consequences for muscle and limb function, but the central nervous system does possess some limited capacity to repair itself naturally.

Understanding what drives this repair mechanism could aid the development of new treatment strategies aimed at boosting the self-healing capacity of the injured spinal cord by taking advantage of 'tools' that the spinal cord already possesses.

Read more on the University of Oxford website...

Similar stories

Heidi Johansen-Berg elected a Fellow of the Royal Society

Professor Heidi Johansen-Berg, Professor of Cognitive Neuroscience has been honoured by the Royal Society by being elected a Fellow for her outstanding contributions to science.