Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A team of our neuroimaging researchers will lead this study, which has received a grant from the University of Oxford's COVID-19 Research Response Fund.

MRI scanner from the control room

COVID-19 adversely affects the brain. Around 36 per cent of hospitalised patients show symptoms ranging from loss of sense of smell, to strokes, and seizures. Concerns are growing that COVID-19 may cause long-term harmful neurological effects including cognitive impairment, mental health disorders, and chronic breathing difficulties. This may arise from the direct viral invasion of the brain, or autoimmune responses to the infection, or indirect effects of severe systemic illness.

Using magnetic resonance imaging (MRI), a team led by Associate Professor Kyle Pattinson will quantify brain abnormalities associated with COVID-19 infection. Their aim is to collect proof-of-concept data that will leverage funding for further multi-centre research collaborations. The eventual outcome will be brain markers to direct individualised treatments improving both short- and long-term outcomes from COVID-19.

The team will undertake two observational studies: an acute study in hospitalised patients and a follow-up study, using high-resolution brain-stem MRI, performed 3-6 months later, after patients have been discharged from hospital. In this way, the researchers will be able to characterise the brain structural, functional, and cerebrovascular effects of COVID-19 infection, establish quantitative relationships between clinical/bedside measures of COVID-19 and neuroimaging measures, and provide preliminary data sets for future discovery of novel biomarkers.

Similar stories

European Platform for Neurodegenerative Diseases launches repository of cohorts for researchers

The new Cohort Catalogue will facilitate discovery of over 60 neurodegeneration research cohorts from 17 countries across Europe

Two NDCN students join BNA Scholars Programme

The British Neuroscience Association Scholars Programme was launched in 2021 with a view to improving equality, diversity and inclusion in neuroscience.

Researchers win UK Dementia Research Institute Grand Challenge Award to identify early signs of Alzheimer's

The MRC Brain Network Dynamics Unit has received funding for a multi-year research partnership designed to advance the understanding of early changes to the operations of brain circuits in Alzheimer's disease.

Ophthalmology Conference in Kyiv

On 21 February, Robert MacLaren organised a one-day ophthalmology conference in Kyiv together with Dr Andrii Ruban, President of the Ukrainian Vitreoretinal Society.

Bioelectronic implant offers an intelligent therapy to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their 'smart' bioelectronic implants.

Direct evidence of reduced NMDA receptors in people with form of encephalitis

NMDAR-antibody encephalitis is an autoimmune brain condition caused by patient’s own antibodies that bind to NMDA (N-Methyl-D-Aspartate) receptors in the synapses between nerve cells.